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SUMMARY 

The general wave equation is derived governiug the propagation of 
sound in a stratified rrmving medium, the velocity of which vsries only 
along one coordinate. Ucder the assumption that the flow velocity is 
small and slowly varying, a simplified equation is adopted which is sat- 
isfactory for the present application. A solution is found to this equa- 
tion corre,sponding to the pressure field around a spherical source located 
above a plane ground in a horizontal wind whose velocity increases with 
altitude. It is shown that within the acoustic shadow that forms on the 
upwind side of such a source the pressure field is similar to that which 
is obtained in the corresponding problem of a sound source fn a tempera- 
ture gradient. Au expression is derived for the rate of attenuation 
within a shadow which is brought about by the presence of both a wind and 
a temperature gradient. 

INTRODUCTION 

. 

An important phenomenon associated with the propagation of sound in 
the atmosphere is that of the refraction of the acoustic rays which c&z1 
be brought about not only by the presence of a temperature gradient but 
aho by the presence of a-wind with a gradient in speed. A uniform wind 
will have little effect on the sound propagation since its speed will, in 
general, be mch smaller thm that of sound. However, the presence of a 
wind gradient leads to sn effective variation in the speed of sound at 
different points, snd this causes a refraction of the rays, just as in 
the case of a temperature gradient. The important difference between the 
two phenomena lies in the fact that in a temperature gradient the local 
speed of sound is determine d by the temperature at that pdlnt, whereas in 
the wind case the effective sound speed depends on the direction as well 
as on the magnitude of the wind.velocity. This II.Esns that, assuming the 
gradient in each case to lie always in the sums direction, c&L it the 
vertical, the sound field around a spherical source in a temperature 
gradient will be symnetrical about that vertical which passes through the 
source; in other words, it will depend on only two coordinates. In the 
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wind case, however, this symetry clearly no longer exists, and the field 
will necessarily depend on three coordinates. 

This phenomenon leads to an interesting type of shadow formation in 
the wind case. If a spherical source is situated above ground in a hori- 
zontal wind whose velocity increases uniformly with height, then a shadow 
region into which no acoustic rays penetrate will. form on the upwind side 
of the source but not on the downwind side. In fact, the distance to the 
shadow will be a minimum directly into the wind and will increase to 
infinity at right augles to it. This situation is illustrated in fig- 
ure 1. Inthe presence of a negative temperature gradient alone, the 
shadow distance is, of course, the same in all directions. 

A consideration of these facts suggested the tentative assumption 
which was made in a previous report (ref. 1) on the sound field in a wind- 
created shadow. There it was assumed that an expression for the dif- 
fracted field within the wind-created shadow could be obtained from the 
corresponding expression for thetemperature-created shadow by replacing 
the sonic velocity gradient by the wind velocity gradient times the cosine 
of the angle between the sound and wind directions. The results of the 
present study furnish the justification.for this assumption. 

This investigation was conducted at the Massachusetts Institute of 
Technology Acoustics Laboratory under the sponsorship and with the finan- 
cial assistance of the National Advisory Comuittee for Aeronautics. 
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0 polar angle of wave number, t=+(P/a> 

lc wave-number component in horizontal plane, ia- 

IJ- =lor2 

P density fluctuations 

PO density of medium 

PI polar angle 

0 angular frequency 

ANALYSIS 

Derivation of Wave EQuation 

In an inviscid medium moving with the velocity V the linearized 
Wavier-Stokes equations for the conservation of mass snd momentum become, 
in the absence of sources, 

k+v ap au1 
at ~+po~=o 

h+U a(v”iS+vaU,-- lbp 
at 3 ax3 % PO axi 

(1) 

(2) 

provided the wind velocity is assumed to lie in the xl-direction and to 

be a function only of x3. Eere p. represents the static density of 
the medium which is assumed constant; the density fluctuations p, the 
sound pressure p, and the particle velocity ui are considered to be 
small qusn-tities of the first order. If the further assumption is made 
that p = c2p, that is, that the pressure and density variations are 
adiabatically related, then these equations yield 

L a2p = (1 -qE& z-P+ 2 - F & + 2p,c g g2 r 
.2 at2 

(3) 

. 
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where M = V/c and the coordinates xi have been relabeled x, y, 
and z. 

It is next assumed that the sound pressure p and the verticti 
component of the particle velocity u3 vary harmonically in time as 
e-ikct and can be Fourier analysed in the x- and y-directions: 

p = .-ikct J- O" ei(ax-tay)F(a,B,z)da d/3 
-m 

u3 = e -ikct 

I ei(cor+By)G(a,f3,z)da dfl 

(41 

The Fourier transforms are related by equation (2) which gives 

dF - = ip,c(k -'&)G 
dz 

Substitution of these relations into original differential equation (3) 
then shows that F must satisfy 

&+ 2aMf 
dz2 k-aMdz 

- aM)2 - a2 - 82-jF = 0 (5) 

together wfth appropriate boundary snd source conditions. Here 
M' = dPll/dz. 

It is convenient to rewrite expressions (4) in polar coordinates by 
putting 

x = r co8 $4 
y = r COB $b 

a = K COB e 

s = K sin ‘8. 
. ._ 

da dp = K dl-de 
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so that p becomes, with 7=e -@, . 

P= J- ,itcr co6 y 
F(s,7,z)s * dr (6) 

The boundary condition at the ground surface, z = 0, can be epeci- 
fled by requiring that the ratio of the pressure p to the normal com- 
ponent of the particle velocity u in this plane be equal to a complex 
impedance Z independent of the angle of incidence. .A point source of 
sound is considered to be located a height h above this plane. 

The source condition can be derived in the usual way by writing p 
as the sum of two functions, namely, p = p. + pl, where p. represents 
the solution in an unbounded medium and pl is an everywhere-regular 
solution to wave equation (3) chosen so that p. + pl satisfy the 
boundaryconditions. Since one of the requirements on p. is that it 
represent outgoing radiation at great heights on the upwind side of the 
source, it will be convenient to label the two independent solutions of 
equation (5) as D(z) and U(z), where D(z) represents a downcoming 
wave and U(z) au upgoing one for large values of z. One can then 
write PO in the form given by equation (6), where the corresponding 

FO 
is given below the source by 

FO = m%7,z) (74 

and above the source by 

FO = BUk7,z) ('lb) 

which corresponds to e 
i,/GIz-hi 

inastationarymedium. The two 
constsnts A and B -are determined by the conditions at the source, 
namely, by requiring that the pressure be continuous across the plane of 
the source, z = h, and that the particle velocity (or pressure gradient) 
suffer a discontinuity across this plane, whkh is determined by the 
source strength. The first of these conditions yields the relation 

AD(h) = BU(h) (8) 
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The second source condition may be obtained by specifying the source 
output. To do this requires that 

s u,as=4Yc (91 

where un is the component of u perpendicular to the surface ele- 
ment dS; the integration is carried out over a smell surface enclosing 
the source. Now, from momentum equation (2) there follows 

b -ip,c(k - aM)u~ - pocu~'G~l = - 
% 

on msking use of equations (4). The three components of the parti&e 
velocity are then 

ul = a ap bp -+b- 
ax1 ax3 

where 

a-l = ipOc(k - aM) 1 

b-l = g(k - c&i)2 
J 
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The last integral is over the -two surfaces x1 = 0' and xl = O+, 
and it vanishes since p and its derivatives are continuous along xl. 
However, because of the discontinuity in the vertical component Of VP, 
the first integral on the right does not vanish but became6 

the integration being taken over the two surfaces x3 = h' and x3 = h+. 
Thus, introducing an expression of the form given by equation (6) for p. 
and reverting to polar coordinates r, z gives 

2a 
s 

aelK' 'OS r@IJl(h) - AJY(hjtz do d7 r dr 

which must be equated to 43~. Here equations (7) have been used to 
express F,, and the primes denote differentiation tith respect to z. 

From the well-tiown relations 

1 
s 

'II .itm cos 7 
2x, 

d7 = J,(Kr) 

s 

m 
JO(m)s dtc = 6(r) = 0 

0, 

s 6(r)r dr = 1 

There follows immediately 

a BU'(h) - t- AD'(h)] = $ 

b f 0) 

02) 

. 

where al = a(h). 



I 

5 

WARM 5'1B25 9 A . 

'The two equations (8) sad (IL!) determine A and B snd, hence, 
also the unbounded solution po, which becomes above the source (z > h) 

p. = $Lrn ML: dr eilcr cos 7' b D(h)U(s) 

Here 

W= ip,+ - aM(h)l(U'D - D'U) (141 

and is independent of 2. A similar expression holds below the soLn?ce 
butwith z and h interchanged. 

The general solution p. + pl can now be written 

eitcr co3 y 1 
,-tsn(h) + F+(z)K m ar (15) 

where Fl is determ+edby requiring equation (15) to satisfy the normal 
impedance boundary condition ' Z -- at z = 0. 

@;radp= *o 
It turns out to 

be 

kD(0) - icD'(0) 
F1 =-kU(0) - iQJ'(0) U(h) 

Z where 5 =- 
POC 

snd the primes again denote differentLation with respect 

to 2. 

Approximate Solutions Valid Near Ground 

Up to now no restrictions have been placed on the Mach nmber pi 
beyond requiring that it vary fn only one direction. In the general case 
approximate solutions to equation (5) can be readily obtained by a modi- 
fied W.K.B. method (cf., e.g., the work of Len&r, ref. 2). For the 
present application it will be sufficient to assume that both M2 and 
M' are so smsll that the terms involving these quantities in equation (5) 
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can be neglected. It will also be assumed that M increases lines&y 
with altitude from the value zero at the ground, 2 = 0, so that 

M = 8s (17) 

where s is a constant. 

With these restrictions equation (5) becomes 

or 

&+ k2-s2- 
dz2 t 

2kssz cos(y + @)]F = 0 (18) 

The two restrictions on the range of validity of this equation can 
be expressed as 

s/k << 1 (19) 

and 

62 << 1 (20) 

The first is a high-frequency requirement, while the second is a restric- 
tion to low heights; in practical cases in atmospheric acoustics neither 
restriction seems to be very stringent. 

The general solution to equation (18) is of the form 

F(qy,z) = #z l/3 (21) 

. 

where 

C 

-2/4- 
u= k2 - k2 - 2kKsz cos(y + &&kK* cos(y + $jJ (22) 
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and Zl/3 represents a lfnesr combination of one-third-order Bessel 
functions. The quantity e =fl willbe specifiedlater. The func- 
tion U(z) canI& written provisionally in terms of a Eankel function 
of the pth kAnd as 

u(z) =- ul/ ?K$# d/2) (23) 

where p = 1 or 2 depending on the vslue of E and will be specified 
later. The function D(z) is then defined similarly in terms of the 
other Ha&e1 function. 

Transformation of Integrsl in Cczaplex Plane 

It is of interest to notice that if the function F(tc,y,z) = [D(h) + 
F,Iu(z) i n equation (15) did not depend on y then the integration over 
y could be carried out directly and would yield Jo(Kr), which was the 
stsrting point in the problem of a sound source in a temperature gradlent 
(ref. 3). Inthatcase it provedadvantageous to divide up the Integral 
into the sum of two integrals by writing 2Jo = H&l) + 4'). Guidedby 
these con&Aerations the y contour in equatfon (15) fs deformed into 
the sum of two Hankelfunction contours as shown in figure 2. This is 
allowedsince theintegrsndinvolves 7 only in the form cos 7 and 
cos(7 + $), which are unchanged if 7 is increased by 25(, so that 
clearly the contributions from the fnfinite branches of the contours 
cancel each other. As in the case of the integral representatkm of the 
Iiankel functions the integral converges provided that 

where q lies between 0 and YC. The solution now has the form 

p = $Lld7Jow e*r 'OS ' ~F(K,~,z)~ + 

(24) 
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The convergence-Xf these integrals in the complex K plane is next 
examined with a view to deforming the tc integration path into closed 
contours, as was done in the temperature problem. In other words, for 
the K integration in the first integral in equation (24), a contour 
might be taken enclosing the first quadrant in the clockwise direction, 
=d, similarly, a contour enclosing the fourth quadrant in the counter- 
clockwise direction for the second integral as indicated in figure 3. 
To justify this it must be shown that the contributions from the infinite 
arcs vanish, that there are no branch points in the first and fourth 
quadrants of the K plane, and that the integrals along the imaginary 
axes cancel each other. 

The absence of branch points follows directly from the fact that the 

functions u16E$;@ "l') are integral transcendental functions of u, 

that is, they are single valued and analytic for all finite values of u. 
(They are the solutions to + UF = 0, which is regular for all 
finite values of u.) Also, 

(d2F/du2) 
u(k) is analytic in the first and fourth 

quadrants of the complex tc plane, and, hence, e*r cos 7 F(K,~,z) is 
free of branch points in this region. 

The behavior of the integrands on the infinite arcs is next studied. . 
First of all it is noticed that the exponential term eitcr 'OS 7 tends to 
zero a0 1Er tends to infinity in the first quadrant for values of ,7 
lying on the contour Cl, and similarly this exponentisl tends to zero as - 

tcr tends to infinity in the fourth quadrant for values of 7 lying on 
the contour C2. It must also be shown that F(tc,7,z) +O as tcr -03 
when Rex > 0 (Re indicates real values). In the limit of large values 
of k, u beccznes 

K2162E 
u +- r sz cos(7 + $1 

FekKs cos(7 + $8)]2/3 

whence 

2 ,3/s K2 
3 

+ (ki)E 
cos(7 + $1 

+ KZ 1 
If the following convention is adopted 

l/2 c l/2 k2 - J$ - 2kksz cos(7 + $8)) = i/j2 - k2 + 2kresz cos(7 + @,I 
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for K2 > k2 - 2kKsz cos(7 + #), then it is necessary to choose the &us 
Sign. This req$Lres that p=l if E=-1 and ~=2 if ~.=l. It 
is then easily found from the asymptotic forms of equation (23) that 

D(h)U(z > + $( uul) -U4e 
-iE$(u'/'-q3/2) 

l/3 = cos(7 + $3) 
It2 1 e-"(z-h) 

where ul = u(h). Similarly, 

k=(o) - iSD’@) 
kU(0) - i~U'(O) 

,e4eg/6 
exp 1 g, 

1 
l/3 

U(z)U(h) + ? L QL cos(7 + $3) 
K2 

e-~2/3ks cos(7+~)e-t&+h)e5~i+.2 

whence 

-+& 2-s is= cos(7 + 
1. 

l/3 
F(K,Y,z) K2 8) 1 [ e+(z-h) + e-Kb+h) I 

and so has the required behavior. 

It can now be proved that the two integrals taken along the imagi- 
nary axes cancel each other, that is, that 

im JJ eiKr co' 7 F(K,~)K dK d7 + 
-100 

eircr 'OS 7 F(K,~)K dK d7 = 0 
0 Cl SJ 0 C2 

(25) 
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for 

-7 < arg Kr < A - tl 

where q lies between 0 and YC. To do this tcr is replaced Kreifl in the second integral in equation (25) to obtain 
bY 

I.03 ss e-iKr CO8 7 
F(-x,7)~ ~JC W 

0 c2r 

with the requfrement iYf < 'I[ - SC < arg tEr < -51. 
The integration path C2 by the iekyor&szd line in fig. 2) 
is now the same as Cl taken in the opposite sense and displaced by re. 
Accordingly 7 is replaced by 7 + s[, so that this integral takes the 
form 

with 

10 
-J J .itW co8 7 

0 Cl 
FE$(7 + d]K ac W 

For equation (25) to hold it is then necessary for 

Fk7Y) = FL-&(7 + fi] 

Reference to equation (22) shows that this condition is fulfilled in the 
present case and, hence, that equation (25) is valid. 

The general expression for the pressure field p has now been 
reduced to the sum of two contour integrals taken around the first and 
fourth quadrants of the K plane. These IrAegraJ~ can be expressed as 
a sum of their residues t&en at the poles of F(Ic,~,z) in this plane. 
Finally, the integrations over 7 can be evaluated approximately by R 
saddle-point integration through the points of stationary phase of the 
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integrands; namely, 7 = 0 for the Cl contour and 7 = YC for the 

C2 contour. 

First of all, on carrying out the approximate integration over 7, 
equation (24) becomes 

.I. i [+-M-j 
\/;; 

; F(tc,O,z) dre + 

(l&quadrant) 

(4th quadrant) 

. 

At this point the analysis is restricted to the case of a perfectly 
hard ground by letting 5 +cr~ in equation (16). The more general case 
can be treated by the methods used ti the temperature problem (ref. 4). 
For a hard ground the poles of F are given by the roots of V(O) = 0, 
which becomes 

whence 

where the An components are constants, Ai = 0.686, & = 3.90, 

A3 = 7.05, . . . , A, = b - (3/k)] II: (where n is large). 

Substituting for u. gives 

(lr2 - “,2 312 
2Ekw cos(7 + $d) 
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c 2/3 
2 

kn = k2 - 3EKnSkAn COS(7 f $8) eeix 
1 

As a result of the restriction s/k C< 1 (eq. (lg)), this equation can 
be writen approximately 

E A, cos(7 + 8) e (27) 

It is now required that JRIK, > 0 (where Zn indicates imagfnary 
values) for $.<#<F (damped outgoing propagation on upwind side of 

source). This leads to the result that E = -1 and p =l. 

Since the values Of lCn all lie in the first quadrant, the contour 
integral enclosing the fourth quadrant must v&sh; this leaves the 
integral enclosing the first quadrant in the tc plane, which can be 
evaluated as a sum of residues in the form 

Ey using the Wronskian relationship D'U - Du' = ulW, which gives 
D' = alW/U at K = Kn, equation (28) can be rewritten in terms of U 
only as follows 

- 8TrK 
P= cl- 

n eikn’+(n/4)) 
[ 

a&W(z) 
-F- u(0) @/&)U' (0) 

n=l 1 (29) 

where 

u = “1/2H1/3(1)(~ u3/2) 

. 
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u= 2 - n mnsZ COS #)(-=S CO8 $)w2/3 (30) 

i A, cos 

'-213 

4 3 213 (311 

0 

a1 
-1 = ip,c(k - tcsh cos $) 

Eigh-Frequency Behavior of Solution 

As in the corresponding merature problem, the high-frequency 
behavior of the solution (eq. (29)) can be studied in the shadow zone by 
replacing the functions U by their asymptotic forms, which are valid 
for large value6 of u. It is then found, onreintroducingthetime 
factor emid, that 

where 

B, = 

On substituting for Q from equation (31) into equation (30) 

u= ( -2E COB $4)%cz + ($ &eBia)2'3 

is obtained which gives approximately, for large values of kz, 

61i2z312 + 2s,(~/a)'/~ 
3 
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.where 

Q = -2s CO8 $4 

% =~-~q,cos~ 
( ) 

213, -2id3 
. 

The terms in the exponent of the asymptotic solution (32) become 
then 

Knr + $(z)]'/' + $b(h}1312 - ti = knr + k 5 c?'~(z~'~ + hJi2) + 
[ 

2S,(Z/O)1'2 + (h/c)lj2 - at 1 
= k(r - rol(l - Sn> - c(t - to> 

. 
Here, these quantities have been fdentified with ro, the horizontal 
distance from source to shadow boundary, and with to, the corresponding 
travel along the 1imLting ray, which have been derived from ray acoustics 
in the appendix. 

. 

In terms of these quantities the high-frequency form of the solu- 
tion is 

P" c (Constant), (33) 
a=1 

Within the shadow zone the solution is adequately expressed by the 
first mode alone because of the rapid attenuation of the higher modes. 
To this approximation the sound pressme is damped at the rate of 

8 .68ms1 n 6.1(-s cos $) 21 1 ha. j3db/unit distance (34) 

within the shadow r>r,. 
> 

This is in addition to the 

damping due to cylindrical divergence, which is expressed by the 

factor r -l/2 . 
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The combined effects of a wind and a temperature gradient can be 
accounted for by 'allowing k to vsxy with z. In the high-frequency 
approximation this results in the factor -8 cos fl in equation (9) 
being replaced by -s cos $! - $g, where g is positive for a tem- 

perature inversion. A shadow will fom in this case within that sector 

for which the factor 
( 

1 dc -6 cos # - F z 
1 

2/3 is real. m replacing s 

by 1 dv_, 
CdZ 

the result is obtainedthata shadowwillformtii&Lnthe 

sector defined by 

provided that $ is now Illeasured from the 180° Urte (-x-axis) and 

z>o. If dc 
I I 
z >g then the temperature gradientpredominates over 

the velocity gradient. Inthis case therewillbe ashadowinall 
directions if E<O andnoshadowatallif s> 0. 

Within the normal or illuminated zone the high-frequency (ray 
acoustics) approximation to the solution can be readily obtained by 
integrating equation (24) around the points of stationary phase of the 
integrand in the K plane (ref. 5). 

Massachusetts Institute of Technology, 
Cambridge, Mass., April 6, 1956. 



20 NACA RM 5'1B25 

APPENDIXA 

RAY ACOUSTICS IN A WIND GRADlENT . 

The acoustic-ray paths are determined by Fermat's principle, which 
requires that they be such that the integral . 

s da 
c + v sin 8 cos (W 

is stationary. Deere de is an increment of path length along the ray, 
V is the wind speed, 8 is the angle of inclination of the ray from 
the vertical, and fl is the constant polar angle between the ray and 
the wind direction. 

From the gemetry of the problem it is seen that 

where r' = $$. With this substitution, and wciting ds = J1, 

the Euler equation is obtained for which equation (Al) is stationary in 
the form 

=o 

or 

+ rr2 

sJYT++Mrf cosgl=K 

where M = V/c and K is a ray parameter. The limiting ray which 
defines the shadow boundary can be specified by requiring that r' + o 
at the ground, where the wind velocity is zero. This requirement gives 
K = 1 forthelimiting ray. Carrying out the differentiating in equa- 
tion (A2) and solving for r' gives 

. 
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w 
(A3) 

t 
if higher powers of M are ignored. If M is set equal to sz it is 
foundtothe first order in M that 

s 

Z r= dz 

0 J-zxi-$ = 2/s 
Thetotalhorizontal distance betweenthe source atheight h anda 
point at height z on the shadow boundary is then 

r. = qGs$+ &zq (A4) 

The corresponding travel time to of the limiting ray between 
these two points is given by the integral in equation (Al), which becomes, 
on substituting for ds and sin 8 in terms of rI, 

Equation (A3) is now used to write r' = 1 dq, I and M is set 
equal to 82. Then, to the same appromtion as before, 

c& = r. + 3-20 cos $4)qz3/~ + h3/'> (A5) 

is obtained, where r. is given in equation (Ah). 
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Figure l.- Illustration of mechanism of shadm+-zone formation. 
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Figure 3.- Integration paths in complex K plane. 
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